VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (E.E.E: CBCS) II-Semester Main Examinations, January-2021 Circuit Theory

Time: 2 hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A $(9 \times 2=18 \mathrm{Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Define the terms (a) Power (b) Energy	2	1	1	1
2.	Calculate the current labeled I_{3} in the circuit shown below.	2	2	1	2
3.	Compare the nodal analysis and the mesh analysis techniques for analyzing the networks.	2	4	1	1
4.	Define the average value and the effective value for a periodic waveform	2	1	1	1
5.	What is power factor of an ac circuit? List the methods to improve the power factor.	2	1	1	1
6.	A voltage $\mathrm{v}(\mathrm{t})=100 \cos \left(60 \mathrm{t}+20^{\circ}\right) \mathrm{V}$ is applied to a parallel combination of a $40-\mathrm{k} \Omega$ resistor and a $50-\mu \mathrm{F}$ capacitor. Calculate the steady-state currents through the resistor and the capacitor.	2	2	1	2
7.	Draw the Norton's equivalent circuit of a linear two-terminal bilateral network.	2	2	2	1
8.	State the Tellegen's theorem and write the significance of it.	2	1	2	1
9.	Give the necessary and sufficient conditions for the voltages in a three phase system to be balanced.	2	4	3	1
10.	The two wattmeter method produces wattmeter readings $P_{1}=1500 \mathrm{~W}$ and $\mathrm{P}_{2}=2100 \mathrm{~W}$, when connected to a delta-connected load. If the line voltage is 220 V (rms). Calculate the power factor.	2	2	3	2
11.	For the circuit shown below, calculate the power associated with 6 V source and also specify whether the power is delivered or absorbed?	2	2	4	2

12. Calculate the rms value of the full-wave rectified sine wave shown below.

Part-B $(3 \times 14=42$ Marks $)$
13. a) Find the equivalent resistance at terminals $a-b$ of circuit shown below.

b) Derive an expression for the energy stored in an inductor with suitable assumptions. Also write the properties of an inductor.
14. a) Obtain the form factor of a half wave rectified output voltage with sine wave input voltage of $v=V_{m} \operatorname{Sin}(w t)$.
b) Determine V_{I} and V_{2} in the circuit shown below, by using mesh analysis.

15. a) Find the equivalent impedance of the circuit shown below

$\begin{array}{llll}7 & 4 & 1 & 2\end{array}$
$\begin{array}{llll}7 & 2 & 1 & 2\end{array}$
$\begin{array}{llll}7 & 2 & 1 & 2\end{array}$
$\begin{array}{llll}7 & 4 & 1\end{array}$
$\begin{array}{llll}7 & 4 & 1 & 2\end{array}$
b)

A load being fed by a voltage source through a transmission line is shown in the circuit below. The impedance of the line and return path is represented by $(4+\mathrm{j} 2)$. Find the real power and reactive power absorbed by: (a) the line and (b) the load.

16. a) Derive the condition to get the maximum power transfer in an ac circuit. Also find the expression for maximum power in an ac circuit.
b) Find i_{o} in the circuit shown below, using superposition theorem.

17. a) The unbalanced delta-load shown in figure below, is supplied by balanced line-to-line voltages of 440 V in the positive sequence. Determine the line currents. Take V_{ab} as reference.

b) For a balanced wye connected load, the line voltage is 208 V . The power is measured by using two-wattmeter method. The readings of two wattmeters are $\mathrm{P}_{1}=-560 \mathrm{~W}$ and $\mathrm{P}_{2}=800 \mathrm{~W}$. Determine (i) The total average power (ii) The total reactive power (iii) The phase impedance (iii) The power factor
18. a) Illustrate Kirchhoff's voltage law and Kirchhoff's current law with suitable examples.
b) Calculate the currents in the circuit shown below, by using nodal analysis.

19. Answer any two of the following:
a) Determine v_{o} in the circuit shown below

b) State the Thevenin's theorem and expain the procedure to find Thevenin's voltage and Thevenin's ressistance under dc excitation with dependent sources.
c) Obtain the relationship between the phase and the line quantities of voltages and currents in a three phase balanced Y-connected system. Also derive an expression for three phase active power in a balanced Y connected system.

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	51.93
2	Knowledge on application and analysis (Level-3 \& 4)	48.07
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable,)	-

